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INTRODUCTION

Variational principles apply mostly to boundary problems where eigen-
values are sought, It is seldom used for initial value problems alone where
the far end conditions are neither known nor specified. If we use discrete
methods to solve an initial value problem, such as finite difference method,
ounly the initial conditions should be given. In the same way, if we employ
variational method with spline functions, we should not be concerned with the
far end conditions. This paper gives a procedure to find a recursive solution
of an initial value problem by variational methods using the cubic hermite
polynomial spline functions.

Let us consider a dynamical system governed by the following equation:

L(t)ya(t) = =Q(t) )

with appropriate boundary conditions. In the above equatioan L 1s a linear
operator, yg is the dependent variable, Q is a forcing function, and t is the
independent variable.

Some integral property in the form of a linear functfonal of the
variable,! such as the inner product of an adjoint forcing function a and the
solution of Eq. (1) can be used for estimation.

tb -
Glyal = [ Qyadt (2)
to

ly. M. Stacy, Jr., "Variational Methods in Nuclear Reactor Physics,” Academic
Press, 1974, p. 7.




o | ' '

The estimate y which differs from the solution yz of Eq. (1) by an increment

8y can be written as

Sy = y - ya 3
Then the estimate y becomes '
th - tp - ty - :
Gly) = ] qudt = [  Quadt + [ QSydt
to to to
ty -
= Glyal + ft QSydt (4)
o

which is in error to first order in 6y and Q.

THE VARIATION PRINCIPLE

A more accurate estimate can be made by constructing a variational
principle1 for Eq. (2). By using the adjoint variable y as a Lagrange

multiplier for Eq. (1) added to G{y] we have

- tp -
Jly,y) = cly] + It y (Q+Ly)dt
o]

ty - ty - ty -
= [ Qe+ [ yode + [ yLyde (5)
to to o
In order that J be a variational principle for G the following requirements

must be satisfied.
(a) J is stationary about the function yg which satisfies the relation

in Eq. (1).
L(t)yg = -Q(t) (6)

ly, M. Stacy, Jr., "Variational Methods in Nuclear Reactor Physics,” Academic
Press, 1974, p. 7. .




(b) The stationary value of J deduced from Eqs. (2) through (5) is
Jly,yl = Glyg]l *+ Glyal M
Consider first the stationarity of J by taking the variation
th - th - th -
I = 8{f/ qydt + [ yodt + [  yLydt}
to to to
£y - thy - -
g = ]t Sy(Ly+Q)dt + jt [QSy + yLéyldt (8)
o o

We will make an effort later to impose certain conditions in order that

the following equality holds:
ty - €y =
] yLéydt = [ SyLydt (9)
to to
where i(t) is an adjoint operator.
By combining Eqs. (8) and (9) one obtains

ty - th - =
8] = ft Sy(Ly+Q)dt + ft SylLy + Q]dt = 0 (10)
[o] (o]

Since the variations 6; and 6y are arbitrary it leads to the requirement that
the stationary values yg and ;s must satisfy
Lyg = -Q (11)
Lys = -Q . (12)
Since Eq. (11) 18 the same as Eq. (6), therefore J is stationary about the

function yq. Equation (12) 1is the adjoint equation in terms of the adjoint

operator L, the adjoint variable y, and the adjoint forcing function Q.




Using the relation in Eq. (11) for the stationary value of J from Eq. (5)
we have
- ty ~ ty ~
Jlys ysl = fto Qgdt + Ito ys(Q+Lyg)dt = Glys] (13)
Since J is stationmary and §J + 0 then
Glysl + Glyal (14)
which is the requirement given in Eq. (7).
It is noted that Eq. (10) contains no boundary terms to be satisfied.
This bears an important point in the future discussion of the initial value

problems.

BILINEAR CONCOMITANT
The assumed equality in Eq. (9) is discussed here by considering the
following bilinear concomitant:l
tp - tp —
D= ) 9yLydt - [ yLydt (15)
to to
The above expression can also be written in terms of boundary conditions
at t = tg and t = ty. It is assumed that these boundary conditions are
assigned in such a way that the above bilinear concomitant is identically

zero, i.e.,

D=0 (16)

ly. M. Stacy, Jr., “Variational Methods in Nuclear Reactor Physics,"” Academic
Press, 1974, p. 7.




Then the first variations of D also vanish.
8D = §D(8y) + SD(6y) = O
Since 8y and §y are independent of each other, then

b - tp - -
SyLydt - [ yLdydt = 0
t

- t
§D(Sy) = [
t o

o
and
ty - ty —
6D(8y) = [  yLéydt - [  SyLydt = 0
to to

L Equation (19) is identical to Eq. (9), which is the assumed equality

automatically true.

.

pres

INTEGRAL OF BILINEAR EXPRESSION
The integral of a function is given as
th

1=/ w(y;)dt
to

where ¢(yy) is an arbitrary bilinear expression2 in the form

V(yy) = ay'y' + By'y + Yyy' + eyy

The prime (') in the above expression denotes (d/dt).

Equation (20) can be integrated by parts. Two different forms of

integration and end conditions may be obtained as follows.

‘ ty - - t
I =~ [ yLydt + (ay'+yy)y|
to to

2R, Courant and D. Hilbert, "Methods of Mathematical Physics, Vol. I,”
Interscience Publishers Inc., 1953, p. 278.

(17)

(18)

(19)

previously. This implies that if Eq. (16) is true then Eq. (9) or (19) is

(20)

(21)

(22)




or
tpy — .- - th
L=~ [ yLydt + (ay'+8y)y| (23)
to to
where the differential expressions are
Ly = {ay')' - By' + (ay)' - ey (24)
Ly = (ay')' + (BY)' - yy' - ey (25)

The bilinear concomitant given in Eq. (15) can now be expressed in terms
of the function values and their derivatives at the end points by equating
Eqs. (22) and (23).

- = - tp
D= [aly'y-y'y) - (Y-B)YYIItO (26)
END CONDITIONS FOR THE ADJOINT SYSTEM ]

In order to satisfy the expression D = 0 in Egqs. (15) and (16) the end

terms in Eq. (26) must vanish., Thus it requires

“b(Yb';b‘;b'Yb) - “o(Yo';o‘;o'Yo) - (Yb-Bb)Yb;b + (Yo-So)yo;o =0 (27) 1
Equation (27) can be satisfied identically if the end conditions of the
adjoint system are proportional to the end conditions of the original system

as follows:

b * (Yo‘Bo)kYo (28a)
Yo = (Yp-Bn)kyp (28b)
7b' = —ap tagl Yp=Bp)kye' (28¢)
7h' = —ao” Lop( Yo-Bo) kyp' (284)
where k is a constant.
6




The above expressions give the required end conditions for the adjoint

system in terms of that of the original system. Thus from Eqs. (15) and (16):

tp - tp —
D= [ yLydt - [ yLydt =0 (29)
to to
To summarize, if one can make the end conditions of the adjoint system
satisfy the relationship in Eq. (28), the bilinear concomitent D vanishes.
The variation in Eq. (10) is then valid.
It is also noted that the variation in Eq. (10) has no far end terms
which simplify the computation. This is because the far end terms may cause

certain difficulties in many computational schemes on a number of variatiomnal

methods.

THE FIRST VARIATION
Since the variations 6; and 8y are independent to each other, we take the
first half of Eq. (10) as
- ty - £ty -
8J(8y) = [  SyLydt + [ 6yQdt = 0 (30)
to to
Equation (30) is not in a ready form for estimation., We prefer to use §I
which can be obtained from the bilinear expression I given in Eqs. (20) and
(21). Let
ST = SI(5y) + SI(8y) (31)
The first part of the above expression can be derived from Eqs. (20) and (21)
as
th

§I(8y) = I [(ay'+yy)8y' + (By'+ey)dylde (32)
[o]

g




Integrating by parts one obtains

- - Ctp tp -
§1(8y) = (my'wy)dwlt - J'c sy(Cay’+vy)' - (By'+ey)ldt (33)
) o

It is recognized that the iantegrand in the last term of the above formulae is
Ly. Solving for the last term we have

tp -~ - Ly -

[ éyLydt = (ay'+yy)8y| - SI(dy) (36)

to Lo

Substituting Eq. (32) into (34) and then Eq. (34) into (30) one obtains

8§3(8y) = (apyp'+YpYo) §Yb - (Yo’ +YoYo) $Yo

tb - -
- It [Cay'+yy) 8" + (By'+ey)byldt
[+
tp -
+ [ Syqdt = 0 (35)
to

The above equation contains only 8y and 8y' and none of the variation of the
higher derivative such as §y” for a second order system. The dependent
variable also contains only y and y' and none of the higher derivative such as

y" for a second order system.

ADJOINT VARIABLE FAR END VALUE FOR INITIAL VALUE PROBLEMS

For a second order system the initial values of the function and 1its
first derivative are given, i.e., y, and y,' are known in Eq. (28). The far
end values for the adjoint system yp and yp' are found from Eqs. (28a) and

(28c). Since the variation of a constant is zero, then

8yg = 8y5' = 0 (36)
and - -
Syp = Syp' = 0 (37)
8 i




The conclusion G;b = 0 in Eq. (37) {s important in that the first term at the
right side of Eq. (35) vanishes. Thus the coefficient of G;b is not necessar-
ily zero. This implies that the function yy and its derivative yp' at the far
end are not related as such. By not using any local boundary conditions at
the far end, the computation can start at the near end and carry on in one
direction.

Thus Eq. (35) is simplified to

- - tp -
8J(8Y) = ~(Yo¥o+aoYo')dYo + IC syadt
o]
t

b - -
-fc (CeytBy' )6y + (yytay')Sy']de (38)
o

It is noted that the above equation does not have boundary terms to be

satisfied at the far end at time ty. This is consistent with the notion of

“initial value problem” physically.

TRANSFORMATION OF COORDINATES
The integral sign in Eq. (38) can be converted into a summation sign if
discrete intervals for integration are used. Since the analysis is an initial
value problem, without losing any generality we may let
to=0 and tp =1 , (39)
that is the independent variable is within the interval
0<tx<1 (40)
Equation (38) can be discretized by letting
£ = Kt - mtl (41)

0<CELC]l, 0<t<l, m=1,2,...K (42)

where K is the number of intervals.




Thus

df = Kdt dt = K-ldg (43)

The differential relationship is

d
o (44)
dt dg
or
y' = K; (45)
where
d
() ==—1() (46)
dg

Then Eq. (38) becomes
§J(8y) = O

. - K 1 -
= ~(YoYorooKyo)8yo + L [ Sy(mqr—ldg
m=] 0

K 1 Y - » -
-1 [(ey(®+ary(m))sy(m) + {(yy(m)+aky(m) }rsy(m))x=lde  (47)
m=1
PIECEWISE SPLINE FUNCTIONS
We may express the variables y(m) and ;(m)(E) in terms of piecewise

spline function aT({) and the node point functions ¥(m) and ¥(m) as follows.

y(@)(g) = aT(g) y(m) sy(@) = (sy(m)]Ta() (48)

y@)(g) = aT(g) y(m) sy(m) = [6¥(m)]Ta(E) (49)

y(m)(g) = aT(E)y(m sy(m) = [6¥(m))Ta(g) (50)

Y@ (g) = aT(g)ylm) sy(m) = [6Y(m))Ta(E) (s1)
10




m=1,2,...K
Yo = aT(1)y(0) (52)
;o : aT(1)1() (53)
670 = S¥()a(1) (54)

If Eqs. (48) through (54) are substituted into Eq. (47) one obtains

0 = -(6%(0) | Ta(1) [ voaT(1) + agkaT(1)]y(0)
K- 1
+ ) [ex(m))T g-1 [* ag)qde
m=] 0

K 1 .
- 1 (sy(m)T IO a(g)[ex~'aT(g) + gal(g)]dg y(m)
m=1

K - 1 . .

- 7 [sy(m))T Io a(g){val(g) + akaT(g)}dg ¥m) (55)
m=]

This simplifies to

0 = ~[5¥(9) ] Ta(1) [voaT(1) + agkal(1)]¥(0)

K - K -
+ 3 [5y(m))Tq(m) - § [sy(m))T p(m) y(m) (56)
m=1 m=]1

where

1
q{m) = -1 IO a(£)Q(£)dE

= [q1{®), qp(m), q3(m) | q,(m))T (57)

and
1 . . .
p(m) = fo {a(g) [e(MK-1aT(g) + g(aT(£)] + a(E)[v(aT(g) + o{MKaT(£)]}dE

= (k=13 + gm)¢ + y(m)p + (m)kE (58)

or
[Pij(m)] - e(m)Kfl[bij] + B(m)[cij] + Y(m)[dij] + u(m)K[eij] (59)

11




where

1

B = [byy] = fo a(£)aT(g)dg (60)
1 .

C= [cg3] = fo a(g)aT(g)de (61)
1 o

. D= [dy3] = [ a(g)aT(g)de (62)

| .

E = [egy] = Io a(£)al(£)dg (63)

CUBIC HERMITE POLYNOMIAL SPLINE
The cubic Hermite polynomial spline is continuous in the functional
values and its first derivatives across the nodes. Since we have no second
derivatives for a(£) in Eqs. (58) to (63), no higher order spline is necessary
for this problem,.
The cubic Hermite polynomial gives
Caj(E) = 1-3g%42g37
ax(g) = g-25%g8
a(g) = (64)
a3(g) = 382263
as(g) = -ggd

b

whose derivatives are

;1(5) . -6E+6E2 !
. ;2(5) - 1-4E+3g2

a(E) - . (65)
a3(g) =  6&-6¢2

at(g) =  =28432

12 ‘




It 13 obvious from the above equations that the node point values are

a(0) = (21(0) az(0) a3(0) a4(0)}T

=[{ 1 0 0 o 1T (66a)
2(0) = [23(0) ap(0) a3(0) a4(0)]T

=[ 0 1 0 o 1T (66Db)
a(1) = [a1(1) ap(1) a3(1) az(»]T

=[ 0 0 1 o 1T (66¢)
a(1) = [a1(1) ap(1) a3(l) ag(1)]T

=[ 0 0 0 1 1T (66d)

We wish to form a vector whose components are taken from the functioi and its
derivative at the left node and then the same at the right node. From Egs.
(48), (49), and (66) we have

7T 7T 7
ym@)y | = |alyym | = |1 0 0 o

¥@@) | = [aT@y® | = (o0 1 0 o

v(m) = y(m)
@) | =~ |aMym®™ | = jo 0 1 0
y®) | = |afny® | = |0 o 0 1 (67)
e po —y — . b
1f we define
(@) « [y (@) y,(m) y,(m) y,(=2)]T (68)




Then R
Yl(m) = y(m)(0) (69a)
1@ = y(m)(0) (69b)
73(® = y(m)(1) (69¢)
1, () = g(m)(1) (69d)

The above implies that the same node point has been represented by two
notations as follows
y(x1) (0) = y(m)(1) (70a)
HarD(0) = gl (1) (70b)
By expanding Eq. (68) for different m one obtains
(0 = [0 0 ¥3(0) ¢, (0T = [0 0 y(O)(1) y(O()IT (71a)
¥ = [y (D 101 33D (DT = (91 oy y(D gy g1y y(D 51T (71b)

Y(m) = [7,(m) y,(m) yy(m) v, (@))T &

[y(m gy v(® gy v(® 4y vl (1yIT (T1c)
y(m+l) [Yl(nﬂ'l) YZ(IIH'I) Y3(m+1) Ya(mﬂ')]T =
Thus we have
g (2+1) = y5(m) (72a)
and

for m = 0,1,2,...K.
Similar to the above equation one can prove from Eqs. (50) and (51) that the

adjoint variations are

57, (@) = sy4(m) (73a)
and

sY,(mH1) = gy, (m) (73b)

[P R




METHOD OF SOLUTIONS
First we take the last term of Eq. (56) which is
K
Ry = - ] (67 (™) §y,(m) sy,(m) ,sya(m))[pij(m)][yl(m) Y,(m) yy(m) v, (m)yT
m=1
(74)
Using the relationship from Eqs. (72) and (73) gives
K -
Ry = - J {[pll(m)y3(m+1) + Plz(m)Ya(“‘l) + p13(m)Y3(m) + p14(m)Y4(m)]5Y3(m'1)
m=]
- 1p21{1¥300) 4 pyr(D)y,(0) 4 pyall)y3(1) 4, (1)y,(1)]5y,(0)
K-1
- ¥ {{py (=D yq(m) 4 pr2lmlyy,(m) 4 p13(m+1)y3(m+1) + pyg(mtl)y, (mtl)g
m=]1
R-1
-7 {(DZl(nﬂ-l)Y3(m) + Pzz(m+1)y4(m) + p23(m+l)y3(nﬂ'l) + PZb(Ml)YA(MI)]
m=] ’
+ [y @y3(m1) 4 pyo(mly, (1) 4 poa(m)ys(m) 4 o, (@), (m)) 6y, (m)

= [ (RYRCR-1) 4 puoy, (K1) 4 p,a(K)Iy4(K) 4 . (K)y, (KD )5y, (K)  (76)

It 18 noted here that the variations at the far end are

§73(K) = sy = 0 77

8Y,(K) = gy = 0 (78)




by virtue of Eqs. (36) and (37). Thus the last two terms of Eq. (76) drop
out,

It is again important to emphasize here that the computation does not
contain the condition placed at the far end boundary. The calculation starts
with the initial conditions and carries through in one direction.

The second term on the right side of Eq. (56) gives

K - - - -
Rp = § [qp(® gqp(m a3(® q, (@) ][sy5(m1) gy, (m-1) syy(m) gy, (@))T
m=1
= q1(1675(0) + q5(1 6y, (0
K-1 | - k=1 -
+ 3 [ql(m+1) + q3(m)]5Y3(m) + 7 [qz(m+1) + qa(m)]5Ya(m)
m=1 m=]
+ q3(R§T5(K) + q,(K) sy, (K) (79)
The last two terms drop out again by virtue of Eqs. (77) and (78) .

The quantity q(“) is again expressed as
1
qp(® = g1 I ag(£)o(™(g)de 2 =1,2,3,4 (80)

The first term on the right of Eq. (56) 1is
Ry = -[0 0 673(®) §%,(0)1{0 0 1 0]JT{yo[0 0 1 O] + aoK(O 0 01]}[0 0 Y3(0)y, (0T

= =573(0) {yo¥3(0) + qoky,(0)} (81)

Combining all the above results and substituting into Eq. (56) we have

0 =R + Ry + Ry (82)

16
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Combining all the above results and substituting into Eq. (56) we have

0 =R; + Ry + R3 (82)
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0 = {={vo¥3(0) + agky,(0)}
+ QD = (o300 4 pyp(y,€0) 4 py3(Dyg(l) 4 5, (Dy, (D)) 6v3(0)

1
me]

+

[pll(m+1)y3(m) + plz(m+1)ya(m) + p13(m+1)Y3(m+1) + plh(m*l) Ya(m+1)}

[p3l(m)g3(m'1) + p32(m)ya(m-l) + p33(m)y3(m) + P3a(m)YA(m)]}5§3(m)
K-1
n=]1

- [921(:!!1-1)\13(01) + p22(nﬂ-l)“(m) + p23(m+1)g3(nr+1) + poglatl)y, (m+1)

~ Ipg;(ys(m=1) 4 pyo(my, (@=1) & p,5(m)ys(m) 4 p44(m)Y4(m)]}5§4(m) (83)

RECURSIVE SOLUTIONS
Since the variations 6Y3(°), 6Y4(0), 6Y3(m), and GYQ(E) in Eq. (83) are
all arbitrary, the coefficlients of all these variations must vanish, We first

take the coefficients of the variations GY3(0) and GYA(O).

o — e e e Ly — o

p13(1 ppaD} g} Hop (D -yo) (-py M -agr) | (130} + gD
o230 e 1ga (] ™ leappy D (=ppptD) O I Y

—— -t ey - e —t e — e

(84)

It 18 noted that Y3(°) and YA(O) are the initial conditions of the problem

that is from Eq. (67) and (46).

13(0) = y, (85)
. dy
YA(O) = Yo = K‘lyo' - K’I ;‘; (86)
17




We can solve for Y3(1) and Y4(1) in terms of these initial conditions by

inverting the two by two matrix in Eq. (84).

- = —_ —i=1 - —_— - — — —_

13(D p13¢Y) pyaD) P11 -vg) (-p12-20K) | o q (D
= +
v, (1 p23(1) ppg(D) o) o | [klyro] (D
(87)

For a general case where m = 1,2,...K-1, we have by setting the

coefficients of 6Y3(m) and 6Y4(m) in Eq. (83) to zero.

- - — -1

(p11¢®1) + p33(@)) (py,(mF1) + p34(m)) v4(m)

(p21 (™) + py3(m)y (ppp(mHl) 4 py(m)y| iy, (m)

- + (88)

We solve the above equation recursively for Y3(m+1) and Ya(m+1). Starting
with m = 1 we have the initial conditions Y3(0) and Ya(o) and the solutions
from Eq. (87) for Y3(1) and Ya(l). These values are substituted into Eq. (88)
to obtain Y3(2) and 14(2). From the values of Y3(1), Y4(1), Y3(2), and Y4(2)
one can determine Y3<3) and Y4(3). This procedure continues until we obtain

¥3(K) and v4(K) which are the final values of the problem.

18
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NUMERICAL RESULTS AND DISCUSSION
The analysis presented in previous sections will now be tested by way of
some numerical examples. Let us consider a simple oscillator subjected to a
harmonic force., The differential equation can be written as
m; + ky = £, cos wgt 0<t<T (89a)
where T i{s some finite time of interest and a dot (°) denotes differentiation
with respect to time. The initial conditions are
9(0) = yo and y(0) = v, . (89b)
The system of Eqs. (89a) and (89b) is normalized with respect to T and it
becomes
y*" + k*y* = f* cos wgkt* 0 <tk <1 (90a)
and
y*(0) = yo* and y*(0) = yg* (90b)

Through the following change of parameters

t t
thk = — R dt* = --=
T
dy
y*(t*) = y(r) , y*'(t*) = T 5: (91)

k* = kT?2/m , £* = £,72/m , wg* = wsT

yo*=y0 » V1* = Ty;

Comparing Eq. (90a) with Eqs. (24) and (1), one has
a = congtant = 1 , e = -]

(92)
B=0 , vy=0 and Q = -f* cos wgkt*
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From the data presented here, we further set
m=3.0 , k=1.0 , to=1.30 , wf=0.5
The parameter T is given for each set of sample calculations.

First, Eq. (84) can be used exclusively to obtain all the solutions.

This 1s demonstrated in Tables I through III. In these tables T has taken to

be ten, five, and two, respectively and the number of steps for all cases is
taken to be ten. Both y(t) and ;(t) are shown and the exact solutions are
given in parentheses for comparison. It is clear that the results are

convergent, l.e.,, they are improved as the interval of time is decreased.

TABLE I. SOLUTION TO A FORCED VIBRATION PROBLEM OF A SIMPLE OSCILLATOR

(0 € t € 10, Ten Steps. Exact Solution Shown in Parenthesis)

t y(t) ;'(t)
0 1.0000 (Given) 1.000 (Given)
2.0 1.7590 ( 1.7684) -0.711 (-0.674)
4.0 -1.1495 (~1.0938) -1.450 (~-1.512)
6.0 -1.8534 (-1.9195) 0.867 ( 0.773)
8.0 0.2261 ( 0.1663) 0.564 ( 0.689) 1
10.0 -0.0531 ( 0.1139) -0.404 (-0.381)
]
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TABLE II. SOLUTIONS TO A FORCED VIBRATION PROBLEM OF A SIMPLZ OSCILLATOR

(0 < t <5, Ten Steps. Exact Solutions Shown in Parentnesis)

t y(t) ;'(t)
0 1.0000 (Given) 1.0000 (Given)
1.0 1.8314 ( 1.8315) 0.4991 ( .5012)
2.0 1.7646 ( 1.7684) -0.6828 (-0.6740)
i 3.0 0.5536 ( 0.5654) -1.6161 (-1.6079)
i 4.0 -1.1074 (~1.0928) -1.5060 (-1.5121)
5.0 -2.1221 (~2.1217) -0.4129 (-0.4350)
|
? TABLE III. SOLUTIONS TO A FORCED VIBRATION PROBLEM OF A SIMPLE OSCILLATOR
! (0 € t < 2,0, Ten Steps. Exact Solutions Shown in Parenthesis)
t y(t) ;(c)
0.0 1.0000 (Given) 1.0000 (Given)
| 0.4 1.3892 (1.3892) 0.9184 ( .9186)
f 0.8 1.7132 (1.7132) 0.6760 (-0.6760)
1.2 1.9116 (1.9117) 0.2961 ( 0.2966)
1.6 1.9379 (1.9382) -0.1752 (-0.1742)
2.0 1.7676 (1.7684) -0.6754 (-0.6740) J

21




Some discussion on the present formulation compared with previous work3»4

is in order here. In previous work on unconstrained, adjoint variational

formulation, the point of emphasis was to free the requirements of satisfying
any of the initial conditions and to let the approximate solution converge to
them. In the present analysis it is shown that the far end conditions need
not be considered in a variational formulation of approximate solutions. A
more detailed comparison in terms of numerical convergence, competency,

efficiency, etc. is planned.

3J. J. Wu, "Solutions to Initial Value Problems By Use of Finite-Element-
Unconstrained Variational Formulations,” Journal of Sound and Vibratiom, 53,
1977, pp. 344~356.

43, J. Wu and T. E. Simkins, "A Numerical Comparison Between Two Unconstrained
Variational Formulations,” Journal of Sound and Vibratiom, 72, 1980, pp.
491~506.
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